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Abstract 

 ST Microelectronics microcontrollers and processors are readily available, capable and 

economical processors. Unfortunately they lack a broad user base like similar offerings from 

Texas Instruments, Atmel, or Microchip. All of these devices could be useful in economical 

devices for remote sensing applications used with environmental sensing. With the increased 

need for environmental studies, and limited budgets, flexibility in hardware is very important. To 

that end, and in an effort to increase open support of ST devices, I am sharing my teams 

experience in interfacing a common environmental sensor communication protocol (SDI-12) 

with ST devices. 
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Using SDI-12 with ST Microelectronics MCU’s 

Introduction 

My name is Alexandra Saari, and I am a physics student at University of California, 

Santa Barbara. My background centers primarily in the realms of hardware fabrication, 

software/hardware interfaces, electronic analysis/design, and experimentation. Over the last two 

years, I have been working with a team at Los Alamos National Laboratory on a remote sensing 

system for environmental monitoring. One of the features we wanted to implement was the 

ability to communicate with SDI-12 based sensors, a common type in environmental monitoring. 

This feature had several complications to overcome, partially due to the age of the SDI-12 

protocol, and partially due to our choice of microprocessor, an ST Micro STM32F407. While 

other manufacturers have grown large, open, public support networks, ST Microelectronics 

devices have not enjoyed the same kind of support, being utilized more in commercial products 

than in small scale or hobbyist level development. As such, when developing for the ST devices, 

finding online help is difficult to come by, and often specialized beyond usefulness. In an effort 

to increase the open support for these useful devices, I would like to share and explain a method 

we found that successfully allowed our ST microprocessors to communicate with a SDI-12 

device.  

SDI-12 is a serial communication protocol developed in the late 1980’s for use with 

“smart” sensors used in environmental monitoring. SDI-12 sensors use a 3-wire interface that 

consists of a 12 volt power line, a ground, and a data line. It uses a relatively low data speed of 

1200 baud and inverted 5 volt logic levels to communicate ASCII character commands and 
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responses1. SDI-12 is a difficult protocol to implement on modern hardware, due to the inverted 

logic and the 5 volt signaling (many newer microprocessor use 3.3 volt logic). There are several 

“off the shelf” components that adapt SDI-12 sensors to more standardized serial types, like 

RS232 or USB. However, these devices do not lend themselves to integration into an embedded 

system. There are modern microcontrollers and microprocessors that still use 5 volt logic, such 

as some Atmel products and the Arduino development boards. This could, and indeed does, 

simplify SDI-12 communication somewhat, but there are other tradeoffs that must be considered.  

Our project was based upon the STM32 chip because of its flexibility, performance and 

extremely low power usage. The same architecture that made this processor so useful for us, also 

made it especially difficult to work with in terms of SDI-12 compatibility. It is a 3.3 volt chip, so 

some sort of level translating hardware is required at a minimum. Additionally, on the software 

development side, while many other companies provide “software serial” libraries that allow the 

developer to manipulate serial communications outside of hardware based UART’s (Universal 

Asynchronous Receiver/Transmitter), ST does not provide these. These libraries typically allow 

the developer to create non-standard serial interfaces that uses unusual data rates, inverted logic, 

etc. This means that in order to produce an inverted logic signal, the developer must write their 

own “bit-bang” style driver that produces inverted logic, or find a method of inverting the signal 

through hardware. 

Bit banging relies on the microprocessor to maintain timing and produce logic highs and 

lows over a GPIO (General Purpose Input/Output). The processor literally sends every 1 or 0 in 

some binary data to a communication pin by setting that pin to a high (3.3 volt) or low (0 volt) at 

some speed and timing that corresponds to some data rate (baud). To maintain successful 

                                                           
1 (SDI-12 Support Group (Technical Committee), 2013) 
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communication in this manner, the processor must be tightly constrained to prevent it from 

responding to any resource calls from the system that may cause it to delay signal timing or miss 

an incoming bit. Either of these situations would result in corrupted or lost data. Our chip is 

being used in an embedded system application running an RTOS (Real Time Operating System) 

so the possibility of the processor being interrupted during an attempted bit bang interface is 

high. The better solution for our purposes is to use one of the available UART’s included 

onboard the STM32F407. These take the transmitting and receiving requirements of serial 

communication off of the processor and ensure data integrity.  

A UART usually uses two pins to transmit and receive data. Each pin is specifically 

tasked to be a transmitting pin that will only send data signals out, or a receiving pin that can 

only respond to incoming data. SDI-12, as previously mentioned, uses a single data wire, in 

which the signals can travel to or from the sensor (bi-directional). STM32F407 UART’s can 

operate in a half-duplex mode2 that allows one pin to be used for both transmitting and receiving. 

This does not solve the problem of inverting the signal, which will still require a hardware 

solution.  

To summarize the needs up to this point, in order to implement SDI-12 communication 

with our STM32F407, we can use a UART in half-duplex mode going to a hardware solution 

that both inverts the signal and translates the 3.3 volt logic to 5 volt. Alternatively, we can use 

the UART in standard mode and use a hardware solution that inverts the signal, shifts the output 

to the required 5 volt levels, and converts the single, bidirectional, data line to and from the two 

UART TX/RX lines. Of course, we will also need sources for the 5 volt and 12 volt requirements 

for SDI-12.   

                                                           
2 (STMicroelectronics, 2014, pp. 981-982) 
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Hardware 

At first glance, the first option would appear to be the easiest. In our efforts, we found 

this not to be the case. For bidirectional level shifting, there was an existing solution that had 

been widely used for many other purposes. This circuit consists of a power MOSFET, two 10K 

resistors, and the appropriate power supplies. Please see the following diagram. 

 

Figure 1 MOSFET based level shifter 

This circuit has been tested and works well delivering the appropriate level voltages to 

both the microprocessor and sensor sides of the circuit. Creating a bidirectional inverter proved 

to be more difficult. No such component could be found through traditional commercial 

providers, and no references to such a circuit could be found in electronics forums. We attempted 

to design one, ourselves, but were unable to find a solution that worked using only one wire. As 

an aside, we also tried an integrated circuit from Maxim that claimed to be for 3.3-5 volt level 

shifting, the MAX3371. This chip proved to be unsatisfactory as it could not provide a consistent 

5 volt logic level with a SDI-12 sensor’s expected input impedance, and had trouble with logic 

low thresholds. We contacted Maxim for further advice and inquired about a simulation model 
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for their component (for Multisim or other circuit simulation software), but they were not 

helpful. 

We moved on to the alternative option, using the UART in standard mode and doing all 

the translation in hardware. This proved to be fairly easy, as it is the proposed method given by 

the SDI-12 specification3. Additionally, the engineering services company, Daycounter provides 

a circuit on their website that effectively inverts the signals, and level shifts the voltages in both 

directions4. The circuit is displayed below. 

 

Figure 2 Daycounter SDI-12 circuit 

As the STM32F407 is tolerant to 5 volt signals on the receive pin, we came up with another, very 

simple circuit using a multichannel inverter and a single MOSFET. 

                                                           
3 (SDI-12 Support Group (Technical Committee), 2013, pp. A-1) 
4 (Daycounter Inc., 2015) 
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Figure 3 Alternative SDI-12 circuit 

Both the Daycounter circuit and ours were tested by connecting them to a Cera Diver and DCX 

SDI-12 converter from Schlumberger Water Services. Both performed well and delivered clean, 

inverted digital signals back and forth. Each circuit requires three pins from the processor; a 

UART TX, RX and a GPIO for direction control. The GPIO acts like a railroad switch, directing 

outgoing and incoming transmissions to their respective destinations. 

  In the Daycounter circuit the GPIO enables the 3-state buffer (designated by component 

U1, Fig. 2) allowing the UART TX signal to be inverted and passed along to the SDI-12 data 

line. As soon as the TX line is finished, the GPIO signals the buffer to shutdown, putting the 

output into a high impedance state and allowing the incoming signals from the SDI-12 sensor to 

go to the MOSFET gate (component Q1, Fig. 2). This pulls the UART RX pin low by grounding 

the pin for each positive pulse from the signal, thus inverting the incoming signal back to the 

microprocessor.  

 In our circuit, the MOSFET (Component Q1, Fig. 3) is controlled by the GPIO. When the 

UART is in a transmit state, it sends the signal from the UART TX pin through one channel of 

an inverter (component U1, Fig. 3) with 5 volts Vcc. This inverts the signal and converts it to 5 

volt levels. The GPIO triggers the gate of the MOSFET to allow the inverted transmission to 
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pass through to the SDI-12 data line. Once the transmission is complete, the GPIO deactivates 

the MOSFET’s gate, allowing incoming signals from the sensor into a second channel on the 

inverter (Component U2, Fig. 3) where it is inverted and sent to the UART RX pin. For our 

circuit, we used a hex Schmitt trigger inverter, Texas Instruments P/N SN74AHC14N. For the 

MOSFET we chose a 5LN01SP-AC from ON Semiconductor.  

 

Figure 4 The assembled test circuit 

These components, for testing purposes, were chosen primarily for their ease of use rather than 

space or power efficiency.  

 With the hardware solution working, we were able to move on to the software side of the 

problem. All we need in this case is to set up a standard two wire UART using ST’s provided 

HAL (Hardware Abstraction Layer) drivers. Developers can choose to use the older Standard 

Peripheral Library drivers if they choose, but I will not cover their use here. The following is 

written with the understanding that the reader has a basic understanding of the C programming 

language and the use of functions.  

 

 

Hex inverter 

MOSFET 
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Software 

The first thing we had to do was choose a UART, for our purposes, UART 6 was 

available. Setting up the UART is fairly straightforward for SDI-12. The data is transmitted at 

1200 baud, using a 7 bit word length with even parity. With a start and stop bit, that creates a 10 

bit data string. Setting up the ST UART’s with a standard 8 bit word, with even parity settings 

produced correct results, despite not technically being the correct configuration. So our UART 

initialization function looked like this: 

UART_HandleTypeDef huart6; 
 
void MX_USART6_UART_Init(void) 
{ 
  huart6.Instance = USART6; 
  huart6.Init.BaudRate = 1200; 
  huart6.Init.WordLength = UART_WORDLENGTH_8B; 
  huart6.Init.StopBits = UART_STOPBITS_1; 
  huart6.Init.Parity = UART_PARITY_EVEN; 
  huart6.Init.Mode = UART_MODE_TX_RX; 
  huart6.Init.HwFlowCtl = UART_HWCONTROL_NONE; 
  huart6.Init.OverSampling = UART_OVERSAMPLING_16; 
  HAL_UART_Init(&huart6); 
} 
 

UART 6 on the STM32F407ZG (Our 407 variant) had its TX pin on PC6 and its RX on PC75. 

Those pins translate to GPIO bank “C”, pins 6 and 7. So our UART GPIO initialization function 

was as so: 

void HAL_UART_MspInit(UART_HandleTypeDef* huart) 
{ 
 
  GPIO_InitTypeDef GPIO_InitStruct; 
  if(huart->Instance==USART6) 
  { 
    /* Peripheral clock enable */ 
    __USART6_CLK_ENABLE(); 
   
    /**USART6 GPIO Configuration     
    PC6     ------> USART6_TX  

                                                           
5 (ST Microelectronics, 2013, p. 52) 
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    */ 
    GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7; 
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; 
    GPIO_InitStruct.Pull = GPIO_PULLUP; 
    GPIO_InitStruct.Speed = GPIO_SPEED_LOW; 
    GPIO_InitStruct.Alternate = GPIO_AF8_USART6; 
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); 
  } 
}       
   

Finally, we needed to initialize a GPIO pin to use as our direction controller. This can be any 

standard GPIO pin capable of producing the voltage and current required for triggering the traffic 

controlling device in the developers chosen hardware solution. For our purposes, we just used 

UART 6’s RTS pin (Request to send), which was otherwise unused. This was pin PG8 on our 

processor (GPIO “G”, pin 8)6. This means that at some point before running any SDI-12 code, 

we needed to initialize that GPIO as a pin that would allow us to turn it on (the pin delivers 3.3 

volts to the circuit) or off (the pin delivers 0 volts).  This corresponds to an “output” pin 

configured as required for the developer’s circuit. For our purposes, we configured the pin as a 

push/pull type with no pull up or down resistors enabled. Our GPIO configuration function had 

these lines buried amongst all the other GPIO pins we were using: 

void MX_GPIO_Init(void) 
{ 
 
    GPIO_InitTypeDef GPIO_InitStruct; 
 
    /* GPIO Ports Clock Enable */ 
    __GPIOG_CLK_ENABLE(); 
     
    /*Configure GPIO PG8: USART6 RTS pin*/   
    GPIO_InitStruct.Pin = GPIO_PIN_8; 
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; 
    GPIO_InitStruct.Pull = GPIO_NOPULL; 
    GPIO_InitStruct.Speed = GPIO_SPEED_HIGH; 
    HAL_GPIO_Init(GPIOG, &GPIO_InitStruct); 
 
    /*Stuff for other GPIO functions*// 
} 

                                                           
6 (ST Microelectronics, 2013, p. 52) 
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All of the above code just sets up the processor to use UART 6 and one GPIO pin. The main 

thing to understand here is that these functions must be run prior to attempting to use the UART 

or GPIO. This does not need to be written manually and can be auto-generated using a tool called 

Cube MX, provided freely by ST. The next part, however, will deal with initiating SDI-12 

communication, so cannot be auto-generated.  

 SDI-12 communication is initiated by the processor. The processor asks an SDI-12 sensor 

something by sending it an SDI-12 command, then the sensor responds with an SDI-12 response. 

SDI-12 commands are generally formatted like so:  <address><command>! 

SDI-12 addresses can be upper or lowercase letters from a-z, or the numbers 0-9. So, for 

example, to ask a sensor with address “a” to start a measurement, you would send the command 

“aM!”. If everything is working correctly, the sensor would send back a response like “a0015” 

followed by a carriage return and a line feed7. The “a” in the response represents the address of 

the sensor responding, and the “5” represents the number of measurements the sensor will have 

available within one second. For more information about SDI-12 commands and responses, 

please refer to the current specification available at sdi-12.org. 

 To initiate SDI-12 communication, first we prepare our hardware to transmit by setting 

the direction pin to high, then send a break using the command,  

“HAL_LIN_SendBreak(&huart6)”, then waiting for 12 to 20 milliseconds before transmitting 

the SDI-12 command characters using “HAL_UART_Transmit(&huart6, data, len, timeout)”, 

where data is the string of characters you wish to send, len is the length of that string, and 

timeout is the amount of time in milliseconds to wait before giving up. Then set the direction pin 

to low and set the receive pin to listen for the incoming data from the sensor using 

                                                           
7 (SDI-12 Support Group (Technical Committee), 2013, pp. 11-12) 



12 
 

“HAL_UART_Receive(&huart6, data_buffer, BUFFER_SIZE, timeout)”, where data_buffer is 

the array that will store the incoming data, BUFFER_SIZE is the maximum length the string of 

data characters might be, and timeout is the maximum time the UART should wait to receive the 

data. Putting all this together to make a simple SDI-12 command function looks like this: 

int SDI12_Command(uint8_t *data, int timeout) 
{     
    len = strlen((char *)data); 
    HAL_GPIO_WritePin(GPIOG, GPIO_PIN_8, GPIO_PIN_SET); //set outgoing 
    //Send break 
    if(HAL_LIN_SendBreak(&huart6) != HAL_OK) return HAL_ERROR;  
    //set marking 
    HAL_Delay(20); 
    //send message    
    if(HAL_UART_Transmit(&huart6, data, len, timeout) != HAL_OK) return HAL_ERROR; 
    HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_8); //set incoming 
    //Begin Receive, wait for message back 
    __HAL_UART_FLUSH_DRREGISTER(&huart6); //flush receive buffer 
    if(HAL_UART_Receive(&huart6, data_buffer, BUFFER_SIZE, timeout) != HAL_TIMEOUT) return     
HAL_ERROR; 
    //end command function 
    return HAL_OK; 
} 
 

This function will send a command to a SDI-12 sensor and store the sensor’s response in the 

array “data_buffer”. All that remains is to process “data_buffer” for whatever pertinent 

information is relevant to the application. That code will, of course, be entirely dependent on the 

final application’s and developer’s needs.  

Conclusion 

 The above relates our experiences with interfacing SDI-12 and ST hardware. I’ve 

attempted to share some of the issues we had while trying to accomplish this, and share the basic 

requirements for a successful interface, in the hopes of saving future developers some time and 

energy. The system we developed works well, and the Daycounter circuitry was tested and also 

works well. Using the information provided here should give everything needed to set up the 

basics of a functioning SDI-12 interface. With the looming environmental issues facing the 
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world, I hope this little bit of information will prove useful to the people engaged in 

environmental research, and save them a little time.    
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